Shivaji University, Kolhapur

Syllabus For

B. Sc. Part-III Nanotechnology

to be implemented from the academic year 2018-19

(June 2018) onwards.

SHIVAJI UNIVERSITY, KOLHAPUR

(B. Sc. Nanotechnology)

T. Y. B. Sc., Sem. V

Course Structure

Course No	Title	Lecture	Practical	Examination/ Evaluation of marks/Semes ter
NT-	Nanometrology: Standards And	37	-	
309T	Nanomanufacturing			50
NT-	Nanomechanics	38	-	50
310T				
NT-	Nano-Optics	37	-	50
311T				
NT-	Nanomagnetism	38	-	50
312T				
NT-	Laboratory Course-III	-	60	Annual
313P				
NT-	Laboratory Course-IV	-	60	Annual
314P				

SHIVAJI UNIVERSITY, KOLHAPUR (B. Sc. Nanotechnology) T. Y. B. Sc., Sem. VI Course Structure

Course No	Title	Lecture	Practical	Examination/ Evaluation of marks/Semes ter
NT-	Nanostructure and	37	-	50
313T	Nanocomposite thin films			
NT-	Nanocatalysis	38	-	50
314T				
NT-	Environmental Nanotechnology	37	-	50
315T				
NT-	Nanobiotechnology	38	-	50
316T				
NT-	Laboratory Course-III	-	60	100
313P				
NT-	Laboratory Course-IV	-	60	100
314P				

SHIVAJI UNIVERSITY, KOLHAPUR (B. Sc. Nanotechnology) T. Y. B. Sc., Sem. V Syllabus Paper IX

Title of Paper: Nanometrology: Standards And Nanomanufacturing Subject Code: NT-309T

Unit I: The Transition, the Need, Nanometrology and Uncertainty10 LBackground to Nanometrology, Background to Nanomanufacturing, The Nano Perspective,
Nanometrology. Uncertainty, Heisenberg Uncertainty, Quantum Entanglement, Applications.

Unit II:Quantum Metrology and Nanometrology tools 9 L

Atomic Clocks, the Meter and Time, The Quantum Triangle, The Single-Electron Transistor. Nanometrology tools: Electron Beam and Atomic Force Tools, Spectroscopic Tools, Nanomechanical Tools.

Unit III:Nanometrology and Nanomanufacturing Standards 10 L

8 L

Standards for Nanotechnology, NIST Efforts, IEEE Roadmap for Nanoelectronics

Unit IV:Nanomanufacturing Molecular Assembly 8 Lithographies,Nanomanipulatorsand Grippers, Bottum-Up Manufacturing,Molecular-Scale 8

References:

Assembly Lines.

1. Introduction to nanoscience and nanotechnology, CRC Press, Tylor and Francis Group, Boca Raton, G. L. Hornyak, H. F. Tibbals, J. Dutta and J J. Moore.

2. Introductory Nanoscience: Physical and Chemical Concepts, CRC Press, Tylor and Francis Group, Boca Raton, M. Kuno.

SHIVAJI UNIVERSITY, KOLHAPUR (B. Sc. Nanotechnology) T. Y. B. Sc., Sem. V Syllabus Paper X

Title of Paper: Nanomechanics

Unit I: Introduction

Two - atom chain mechanics, interaction potentials, external forces, dynamics motion, Three atom chain. Lattice mechanics, Stress and strain.

Unit II: Linear elasticity relations and Molecular dynamics

Orthotropic and isotropic materials, crystallines materials.

Molecular dynamics: verlet algorithms, Nordsieck/gear predictor-corrector methods, molecular dynamics applications, nanomachines, wear at the nanometer level.

Unit III: Structure and mechanical properties of carbon nanotubes 10 L

Structure of carbon nanotubes, mechanical properties of carbon nanotubes. Nanomechanical measurement techniques and application: AFM measurements: mechanical properties of CNTs, Nanoindantation.

Unit IV: Nano- Microelectromechanical System

MEMS fabrication techniques, NEMS fabrication techniques, MEMS/NEMS Motion Dynamics, MEMS Devices and applications, NEMS Devices and applications.

References:

1. Introduction to nanoscience and nanotechnology, CRC Press, Tylor and Francis Group, Boca Raton, G. L. Hornyak, H. F. Tibbals, J. Dutta and J J. Moore.

2. Introductory Nanoscience: Physical and Chemical Concepts, CRC Press, Tylor and Francis Group, Boca Raton, M. Kuno.

8L

10L

Subject Code: NT-310T

10L

SHIVAJI UNIVERSITY, KOLHAPUR (B. Sc. Nanotechnology) T. Y. B. Sc., Sem. V Syllabus Paper XI

Title of Paper: Nano-Optics	Subject Code: NT-311T			
Unit I:Introduction to Optics and the Surface P	lasmon 10L			
Interactions of light with Matter, The Nano Perspective. Surface Plasmon: The Surface Plasmon Resonance, Scattering, Color Generation from Nanoparticles and Nanostructures, Applications of Nanoplasmonics.				
Unit II:Quantum Dots	8 L			
The BhorExiton Radius, Tunig the Gap, Luminesc	ence, Applications.			
Unit III: Near-Field Microscopies	11 L			
The Diffraction Limit, Near-Field Microscopy, Ap	plications.			
Unit IV: Nanophotonics	8 L			
Photonics, Photonic Structures in living systems, P Nanophotonic.	hotonic Crystals, Fabrications of			

References:

1. Introduction to nanoscience and nanotechnology, CRC Press, Tylor and Francis Group, Boca Raton, G. L. Hornyak, H. F. Tibbals, J. Dutta and J J. Moore.

2. Introductory Nanoscience: Physical and Chemical Concepts, CRC Press, Tylor and Francis Group, Boca Raton, M. Kuno.

SHIVAJI UNIVERSITY, KOLHAPUR (B. Sc. Nanotechnology) T. Y. B. Sc., Sem.V **Syllabus Paper XII**

Title of Paper: Nanomagnetism

Unit I:Introduction History, MagneticPhenomena and Their Classical Interpretation, The Nano Perspective.

Unit II: Characteristics of Nanomagnetic Systems

Introduction to Nanomagnetism, Characteristics OfNanomagneticmaterials, Magnetiation and Nanostructures, Magnetic in Reduced Dimension Systems: two- Dimensional Systems, One-Dimensional, Zero-Dimensional systems.

Unit III: Physical Properties of Magnetic Nanostructures 11 L

Sustrate Effects on Structures and Related Properties, Oscillatory Exchange Coupling, Spin-Polarized Tunneling, Magnetoresistivity, Magnetic Moments of 3d Transition Metal Clusters, The Temperature Depending of Magnetic Moments.

Unit IV: Reecent Progress in NanocaleSample Preparation and **NanomagnetismApplications** 8 L

Expitaxial Methods, Nanomagnetism Application: Overview. Current Status of Spin-Based Electonics Devices, Sensors, Nanomagnetism for Biomedical Applications.

References:

1. Introduction to nanoscience and nanotechnology, CRC Press, Tylor and Francis Group, Boca Raton, G. L. Hornyak, H. F. Tibbals, J. Dutta and J J. Moore.

2. Introductory Nanoscience: Physical and Chemical Concepts, CRC Press, Tylor and Francis Group, Boca Raton, M. Kuno.

8 L

10L

Subject Code: NT-312T

SHIVAJI UNIVERSITY, KOLHAPUR (B. Sc. Nanotechnology) T. Y. B. Sc., Sem.VI Syllabus Paper XIII

Title of Paper:Nanostructure and Nanocomposite thin filmsSubject Code: NT-313T

Unit I:Introduction

Introduction. Classification of Nanostructured, Nanocomposite Tribological Coatings: Nanoscale Multilayer Coatings, Nanocomposite Coatings, Functionally Graded Coatings. Background of Nanostructured Super-Hard Coatings: Nanoscale Multilayer Coatings, Single Layer Nanocomposite Coatings.

Unit II:New Directions for Nanostructured Super-Tough Coatings

Functionally Graded Multilayer Coatings, Functionally Graded Nanocomposite Coatings. Processing Technique and Principles: Plasma Definition, Chemical Vapor Deposition, Physical Vapor Deposition.

Unit III:General Considerations and Practical Aspects of Sputtering Deposition

Reactive Sputtering Deposition Process Stability, Film Structure Control (Structure Zone Models), Sputtering Glow Discharges, Energetic Enhanced Deposition.

Unit IV:Applications of Thin Film

Technological Application of Thin Films, Unbalanced Magnetron Sputtering of Ti-Al-Si-N Coatings. Unbalanced Magnetron Sputtering of Ti-Si-B-C-N Coatings. Pulsed Closed Field Unbalanced Magnetron Sputtering of Cr-Al-N Coatings

References.

1. Introduction to nanoscience and nanotechnology, CRC Press, Tylor and Francis Group, Boca Raton, G. L. Hornyak, H. F. Tibbals, J. Dutta and J J. Moore.

2. Introductory Nanoscience: Physical and Chemical Concepts, CRC Press, Tylor and Francis Group, Boca Raton, M. Kuno.

3. Nanocoatings: Principles and Practice By stevenabbott and Nigel Holmes,

SHIVAJI UNIVERSITY, KOLHAPUR (B. Sc. Nanotechnology) T. Y. B. Sc., Sem. VI Syllabus Paper XIV

Title of Paper: NanocatalysisSubject Code: NT-314T

Unit I: Introduction to Catalytic and Nanocatalytic materials:

The importance of Catalysis in a modern society, what is catalyst? The nano perspective.

Unit II: Fundamentals of Catalysis

Adsorption of a molecule on a catalyst surface, adsorption theory, surface reaction.

Unit III: Synthesis

Synthesis requirements, example of a Conventional Synthetic technique, Nontraditional methods for preparing nanocatalyst.

Unit IV: Catalyst Characterization

Overview, bulk characterization techniques, surface characterization techniques.

References:

1. Introduction to nanoscience and nanotechnology, CRC Press, Tylor and Francis Group, Boca Raton, G. L. Hornyak, H. F. Tibbals, J. Dutta and J J. Moore.

2. Introductory Nanoscience: Physical and Chemical Concepts, CRC Press, Tylor and Francis Group, Boca Raton, M. Kuno.

3. Physical Chemistry of Surfaces, W. Adamson, Wiley Intersciences, (5th edition) 1990.

4. Nanoparticles and Catalysis; D. Astruc, Wiley-VCH, 2008

SHIVAJI UNIVERSITY, KOLHAPUR (B. Sc. Nanotechnology) T. Y. B. Sc., Sem. VI Syllabus Paper XV

Title of Paper: Environmental Nanotechnology

Subject Code:NT-315T

Unit I: The Environmental (and Technology)

Background, Traditional Methods of Detecting, Environmental Contaminants, Type of Environmental Sensors, Introduction to Environmental Mitigation National Security and Defense.

Unit II: Water and Soil Quality, Monitoring, and Mitigation

Traditional water Treatment, nanomaterial Contamination in Aqueous Environmental, Activated Carbon-A Simple Traditional Nanotechnology, Membranes and separation Technology, Oil Spills ,Chemical and Biological Sensors and Detectors

Unit III: Air Quality, Monitoring, and Mitigation

Gas Separation: Advanced Membrane Technology,CO₂ Mitigation, Hydrogen Production and Purification, Chemical Sensing and Detection

Unit IV: Energy

Solar Energy and Nano, Batteries, Hydrogen Production and Storage, Fuel Cells, Solar Heating and Power generation Epilogue: SAMMS, One More Pass at Hydrogen Storage, Concluding Thoughts

References:

1. Introduction to nanoscience and nanotechnology, CRC Press, Tylor and Francis Group, Boca Raton, G. L. Hornyak, H. F. Tibbals, J. Dutta and J J. Moore.

2. Introductory Nanoscience: Physical and Chemical Concepts, CRC Press, Tylor and Francis Group, Boca Raton, M. Kuno.

SHIVAJI UNIVERSITY, KOLHAPUR (B. Sc. Nanotechnology) T. Y. B. Sc., Sem. VI Syllabus Paper XVI

Title of Paper: NanobiotechnologySubject Code: NT-316T

Unit I: Introduction to Nanobiotechnology

Definitions, Biotechnology, Bio-Nanotechnology, Biomolecular Nanotechnology, Nanobiotechnology, Biomedical Nanotechnology, Nanobiotechnology. The Biology Immune System: Natural Molecular Recognition, the Innate System, The Adaptive Immune System, White Blood Cell and Antibodies.

Unit I: Using Antibodies in Biosensors: Immunoassays

Antibodies in Molecular Recognition Sensors, Production of Antibodies, Monoclonal Antibodies, Reverse Transcriptase, Recombinant DNA, Antibodies as Selection Tools for Biosensors. Cantilevers as Nano-Biosensors: Sensing Physical Properties, Cantilevers and selective binding, Active Cantilever Sensors, Passive Cantilever Sensors, Surface Effects on Cantilevers, Steric Effects, Surface Free Energy at the Nanoscale.

Unit III: Micro- and Nanosensors and Applications:

Biomedical Cantilever Application, Cantilever Sensor for Cancer Screening, Biotechnology Applications of Cantilevers, Surface Acoustic Wave Nanosensors, Electrochemical Nanosensors. Optical Nanosensors: Photonic Nanosensors, Surface Plasmon Nanosensors, Nanoscale Optical Resonance Grids- Using the Butterfly Wing Effect, Guided- Mode Resonance Sensors, Applications of Guided Mode Sensors.

Unit IV: Nanotechnology for Manipulation of Biomolecules:

Optical Tweezers, Dielectrophoresis, Some Dielectrophoresis Applications, Micro- and Nanofluidics, Biochips, Labs on Chips and Integrated Systems.

References:

1. Introduction to nanoscience and nanotechnology, CRC Press, Tylor and Francis Group, Boca Raton, G. L. Hornyak, H. F. Tibbals, J. Dutta and J J. Moore.

2. Introductory Nanoscience: Physical and Chemical Concepts, CRC Press, Tylor and Francis Group, Boca Raton, M. Kuno.

Nature of Theory Question Paper for Theory

Q. No. 1 Multiple Choice based objective type (four options for each question be given) 8 Marks

Q. No. 2 Long answer type (Attempt any Two out of three) 16 Marks

Q. No. 3 Short Notes (4 out of 6) 16 Marks

Total 40 Marks

List of Experiments:

Laboratory III

- 1. Alloy analysis-analysis of Brass metal alloy
- 2. Redox titration
- 3. Complexometric titration for estimation of zinc
- 4. of Hardness of water.
- 5. Determination of Turbiolity of water sample.
- 6. Volumetric estimation of Copper and Nickel from the given solution
- 7. Thermal conductivity -Lee's method
- 8. Surface tension of liquid by drop method
- 9. Thickness of thin film
- 10. Diffraction due to single slit using sodium/ laser source
- 11. Diffraction at straight edge
- 12. Self inductance by Owen's bridge
- 13. Resistance of B.G. by half deflection method
- 14. e/m by Thomson method/ Millikan's oil drop method
- 15. Sharpness of resonance in L-C-R series circuit
- 16. P.O. box- Measurement of resistance of galvanometer (Kelvin's method)
- 17. Preparation of superhydrophobicnanocoatings by sol-gel method
- 18. Environmental Sampling methods and analytical preparations
- 19. Air pollution monitoring and analysis
- 20. Determination of total alkalinity and acidity of a water sample.
- 21. Chemical Oxygen Demand, Dissolved Oxygen and Biological Oxygen Demand
- 22. Total Hardness, Sulphates , Nitrates and Chlorides
- 23. Physical Properties of Minerals, ore and Rocks
- 24. Optical properties of Minerals and Study of crystal systems

Laboratory IV

- 1. Surface tension by Fergusson's modified method
- 2. Diffraction due to cylindrical obstacle
- 3. Spherical aberration
- 4. High resistance by leakage
- 5. Absolute capacity of a condenser (Worsnop and Flint)
- 6. Polar graph using photo cell/ photo voltaic cell
- 7. Hystersis curve by CRO.
- 8. Hall effect
- 9. Conductometric titration of weak acid V/s weak bases
- 10. To determine the equivalent conductivity of a weak electrolyte at different concentrations, and hence the dissociation constant of electrolyte.
- 11. To determine the relative e strength of two acids by conductance measurements.
- 12. To determine solubility of a sparingly soluble salt in water by conductancemeasurements.
- 13. To determine the composition of a mixture of acetic acid & hydrochloric acid byConductometric titration.
- 14. Verification of Ostwalds dilution law & determination of the dissociationconstant of a weak monobasic acid conductometrically.
- 15. To determine the solubility product of silver chloride using chemical cell.
- 16. To find the stability constant of the silver ammonia complex.
- 17. Photoluminescence study of nanomaterials
- 18. Photocatalytic degradation of dyes
- 19. Mechanical properties of nanomaterials
- 20. Determination of partition coefficient of benzoic acid between water and benzene.

Scheme of Practical Examination for B. Sc. Part – III

- 1. Practical examination will be conducted annually.
- 2. Practical examination will be conducted for three days per batch.

3. The examination will be conducted in two sessions per day and each session will be of three hours duration.

- 4. Every candidate should perform total 6 experiments.
- 5. Study tour up to seven days anywhere in India is compulsory.
- 6. At least eighty percent practical should be completed by the student

7. The marks distribution for practical is as below. Practical groups Marks

Course	Marks
Laboratory III	75(25 x 3 experiments)
Laboratory IV	75 (25 x 3 experiments)
I) Certified laboratory journ	nal20
II) Study Tour Report	10
III) Seminar Report / Project	ct Report 20